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STABILIZATION AND EVOLUTION OF PARAMETERS

OF A SYMMETRIC LAMINAR FLOW IN A PLANE

CHANNEL WITH SUDDEN EXPANSION

UDC 519.6A. M. Lipanov and S. A. Karskanov

A problem is formulated for computing the fields of parameters of a stationary laminar symmetric
flow. A two-dimensional flow in a channel with a sudden change in the cross-sectional area is
computed. The evolution of a three-dimensional perturbation inserted into the channel at the initial
stage of computations is analyzed. It is demonstrated that the parameters of a two-dimensional flow in
the channel at a Reynolds number Re = 50 become stabilized at a dimensionless time t > 20, whereas
the steady state is reached under the same conditions at t ≈ 100. At a distance of approximately
10h (h is the channel width at the entrance), the flow becomes one-dimensional, but the streamwise
component of the velocity vector remains a function of the streamwise coordinate owing to flow
compressibility.
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Stationary laminar internal gas flows can be divided into symmetric and asymmetric. A symmetric flow is
formed if the Reynolds number Re is low. It was shown [1] that the flow is symmetric at Re = 50 but becomes
asymmetric already at Re = 150, though it remains stationary. It seems of interest to analyze the process of
stabilization of laminar flow parameters and their variation along the channel in the case of a symmetric flow in a
plane channel with a sudden increase in the cross-sectional area at the left boundary (Fig. 1).

The following system of three-dimensional equations of hydromechanics for a compressible medium was
solved:
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Fig. 1. Domain of integration.
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Here t is the time, x, y, and z are the Cartesian coordinates, U , V , and W are the velocity-vector components, T is
the temperature, ρ is the density, P is the pressure, E is the total internal energy, µ is the viscosity, and λ is the
thermal conductivity. The values of µ and λ were assumed to be constant.

Equations (1)–(3) were written in dimensionless form by using the following scales: the distance between
the surfaces at the channel entrance h, the maximum value of the streamwise component of the velocity vector at
the channel entrance Û , and the gas pressure and density at the channel entrance P̂ and ρ̂ corresponding to Û .

Equations (1)–(3) are written in divergent form; therefore, the variables in partial derivatives are omitted.
In Eq. (3), we have

E =
U2 + V 2 + W 2

2
+ cV T (4)

(cV is the specific heat at constant volume).
Using the equation of state of an ideal gas P = ρRT and the relation cp = cV + R, we can write Eq. (4) as

E =
U2 + V 2 + W 2

2
+

1
k − 1

P

ρ
,

where k = cp/cV (cp is the specific heat at constant pressure) and R is the universal gas constant.
The following initial conditions are used in solving Eqs. (1)–(3):

U = V = W = 0, P = Pin, T = Tin.

The boundary conditions at the channel entrance are

P0 = s0ρ
k
0 ;

U0 = ϕ(y, δU ) + C1(P0 − 〈P 〉)ϕ(y, δT ), (5)
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where

ϕ(y, δξ) =

⎧⎪⎨
⎪⎩

1 − (1 − y/δξ)N , 0 � y � δξ,

1, δξ < y � h − δξ,

1 − ((y − h + δξ)/δξ)N , h − δξ < y � h,

ξ → (U, T ), δU and δT are the thicknesses of the dynamic and thermal boundary layers, respectively, s0 is the
specific entropy, 〈P 〉 is the mean pressure P0 at the channel entrance, C1 = 1/(kM0), M0 = U0/C0 is the Mach
number, C0 = (kP0/ρ0)1/2 is the velocity of sound, and N is the order of approximation inside the domain of
integration.

The two remaining velocity-vector components equal zero:
V0 = W0 = 0. (6)

The boundary conditions at the channel exit are
PL = Pa + C2σ(t), (7)

where Pa is the dimensionless ambient pressure,

C2 =
kM

2H + M〈m〉(t) , σ(t) = m(L, t) − 〈m〉(t),
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∫ ∫

S(x)
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S(L)

ρU dy dz,

and H is the half-height of the channel.
It should be noted that the differences P0 − 〈P 〉 and m(L, t) − 〈m〉(t), in accordance with [2], are used to

“remove” perturbations reaching the left and right boundaries of the domain of integration, respectively. If these
differences are used, conditions (5) and (7) are nonstationary.

The boundary conditions on the wetted surfaces are

U = V = W =
∂T

∂n
= 0.

As the domain of integration considered is a gap between two wetted surfaces, which is unbounded in the z

direction, one of the planes (x, y) was chosen to correspond to the coordinate z = 0 to obtain a finite-size volume.
With allowance for the results of [1, 3], we used the periodicity conditions at a distance ±Hz from this plane:

U+ = U−, V+ = V−, W+ = W−, P+ = P−, ρ+ = ρ−.

The distance ±Hz was chosen by the trial method; in the examples considered, Hz = 1.5h.
Equations (1)–(3) were integrated in time by the second-order Runge–Kutta method. In terms of spatial

variables, the first- and second-order partial derivatives were computed with eighth-order accuracy by Zalesak’s
method [4] in accordance to [1]. Difference grids with integration steps constant in space in the x, y, z directions
were used.

The method used was tested for stability and convergence at Re = 104. In accordance with the approach
described in [1], the convergence of the approximate solution was 0.1%.

A three-dimensional perturbation was set at the channel entrance at the initial stage of computations (first
100 steps of integration in time):

V0 = W0 = 0.1U0; (8)

after that, conditions (6) were used.
The evolution of the third component W of the velocity vector can be estimated by analyzing the data

in Fig. 2, which shows the behavior of W as a function of x and y for z = 0 at different times. In Fig. 2a, the
variable W corresponds to the time when its value at the channel entrance equals zero not only at the boundary
but also in the nearest internal point (the condition ∂W/∂x = 0 holds at x = 0). This condition is satisfied after
1700 steps of integration with respect to the dimensionless time (t = 3.4) and corresponds to the Reynolds number
Re = 50. In all computations, the Mach number was M̂ = 0.6. By that time, the leading front of the perturbation
propagates into the channel to a distance x ≈ 3h.
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Fig. 2. Time evolution of the component W of the velocity vector at Re = 50 and t = 3.4 (a) and 14.2 (b).

At a distance y ≈ 1.5h, the leading front of the surface W (x, y) drastically decreases with decreasing x. As
x → 0, the value of W (x, y) remains close to zero. Surfaces beginning in separation regions are seen on the right
and on the left of the front. Each of these surfaces has an extremum.

We can conclude that the perturbation is rather close to the channel entrance at the time corresponding to
100 steps of integration in time (t = 0.2).

The component W of the velocity vector evolves in time. Its spatial distribution, however, remains the same.
The condition ∂W/∂x = 0 holds at the channel entrance at t > 3.4, but the slope of the surface W (x, y) and the
maximum value of W become lower. The perturbation propagates downstream. At the time t = 8, the leading front
of the perturbation is located at a distance x ≈ 55h. The maximum value of W decreases by more than a factor
of 3, as compared with its value at t = 3.4 (Fig. 2a). The maximum of the quantity W is located near the channel
entrance. Later on, the surface W (x, y) becomes less steep and has a maximum near its leading front (Fig. 2b), but
the maximum value of W is smaller than that at t = 3.4 by an order of magnitude. Finally, the third component
of the velocity vector vanishes at t > 20. At the right boundary of the domain of integration (Fig. 2b), the value
of W does not exceed several digits in the fourth significant figure and can be neglected.

With increasing Re, the time needed for the velocity-vector component W to vanish increases. The function
Wmax(t, Re) can be approximated within 4% by the expression

Wmax(t, Re) = f(t)[1 + φ(Re)] + ϕ(Re),

where f(t) = a + b/t, a = −0.0093, b = 0.02265,

φ(Re) = k
Re−Re0

100
, ϕ(Re) = c

(Re−Re0

100

)2

+ d
Re−Re0

100
,

k = 1.05, c = 0.01, d = 0.0035, and Re0 = 40.
When a symmetric flow becomes two-dimensional (this occurs at the time t ≈ 20 at Re = 50), its parameters

are still nonstationary. Figure 3 shows the time evolution of the streamwise component U of the velocity vector in
a channel of length L = 15h for y = z = 0 and x = 12h. It is seen that U = 0.7 at t = 20. With increasing t, the
streamwise component U of the velocity vector first decreases and reaches a minimum (Umin = 0.456) at t = 38.34.
Then, the value of U increases again, reaches a maximum at t = 56.2, and acquires a constant level at t � 100. The
pressure behaves similarly.

Thus, we can conclude that the flow becomes stationary at Re = 50 and t > 100.
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Fig. 3. Streamwise component of the velocity vector of the flow at the point (12h, 0, 0) versus time.
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Fig. 4. Velocity vectors of the flow in the plane xy (z = 0) at Re = 60.

Figure 4 shows the field of the velocity vectors of gas motion near the left boundary of the channel at Re = 60.
Separation zones are clearly visible. As Re increases, the separation regions become extended in the downstream
direction. A two-dimensional gas flow is formed between the separation regions and the central part of the stream.

Near the left boundary of the channel, the vertical component of the velocity vector in the central part of
the flow equals zero. Inside the separation regions, the value of this quantity is of the same order as the streamwise
component. The length of the separation regions reaches 4h. The velocity component V outside the separation
regions rapidly decreases; it is smaller than 0.002 at a distance x ≈ 10h and tends to zero with increasing x.

Under the same conditions, the streamwise component of velocity also decreases with distance from the left
boundary and reaches a minimum (Umin ≈ 0.52) at x ≈ 11.6h (Fig. 5).

The evolution of the profile U(y) can be estimated on the basis of data plotted in Fig. 6: with increasing
coordinate x, the change in the velocity U over the channel cross section is smaller. At Re = 40, the profiles U(y)
for x = 7h and 10h almost coincide. For Re = 50 and 60, the difference in velocity profiles is more pronounced. The
reason is that the streamwise coordinate U as a function of x varies over the entire channel length in a finite-length
channel with the flow density and pressure varied in the streamwise direction (see Fig. 5).

For sufficiently long channels, the condition ρU = const is valid for large values of x, but U is variable because
ρ is variable. Therefore, the Poiseuille profile cannot be asymptotically obtained for a compressible medium. The
difference is 2–3%.

The profile of the only (in a two-dimensional flow) component of the vorticity vector ξ = ∂V/∂x − ∂U/∂y

is symmetric, like the profiles of other flow parameters. The maximums of the component ξ correspond to the
coordinates y = h and 2h at x = 0. We have ξ > 0 at a distance y = 2h and ξ < 0 at y = h. With increasing Re,
the peaks of the vorticity vector (x = 0; y = h and 2h) become higher.
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Fig. 6. Distribution of the streamwise component of the velocity vector over the channel height in
different cross sections at Re = 40: x = 4h (1), 5h (2), 7h (3), and 10h (4).

TABLE 1

Re P0 Pmax x∗

40 0.945 1.025 4,57
50 0.929 1.013 5.58
60 0.920 1.008 6.50

TABLE 2

Re
T

x = 0 x = L

40 0.984 1.043
50 0.979 1.037
60 0.976 1.033

The vorticity vector decreases in the downstream direction and asymptotically tends to a limiting value
corresponding to the greatest value of ∂U/∂y.

Let us analyze the influence of temperature, pressure, and density. In a subsonic flow, these parameters
vary insignificantly. The most significant change (up to 9.5%) is observed in pressure in the vicinity of the left
boundary of the channel. The pressure first increases; after that, the pressure normalized to the ambient pressure
passes through a maximum at a distance x = x∗ depending on Re and then it tends to unity on the right boundary
of the channel. The values of pressure P0 on the left boundary and Pmax (at x = x∗), as well as the coordinates
x = x∗, are listed in Table 1. With increasing Re, the values of P0 and Pmax decrease and the coordinate x∗ is
shifted inward the channel. The changes in pressure along the channel become less intense. Variations in density
have the same character, but it changes to a smaller extent than pressure. At Re = 40, the density increases from
ρ = 0.96 on the left boundary of the domain of integration to ρ = 0.988 at a point where ρ = ρmax. The change in
density is approximately three times smaller than the change in pressure for the same value of Re. As Re increases,
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the changes in density and pressure become more pronounced. At Re = 50, the density changes from 0.948 to 0.982,
i.e., by 0.034, and the pressure changes by 0.084. At Re = 60, the density changes from 0.941 to 0.979, i.e., by 0.038,
and the pressure increases by 0.088.

With increasing x, the temperature monotonically increases and asymptotically tends to the profile T (y)
corresponding to the stationary profile for the streamwise component of the velocity vector. The limits of variation
of temperature of the subsonic core flow are greater than those for density but smaller than those for pressure
(Table 2).

At Re = 40, the changes in pressure and density are 8.4 and 2.9%, respectively, whereas the temperature
along the channel increases by 6%. At Re = 60, the corresponding values are 9.5, 4.0, and 5.8%.
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